
Copyright© 1997 IEEE. Reprinted from IEEE Transactions On Software Engineering, volume 23,
number 7, July 1997, pages 437--444

This material is posted here with permission of the IEEE. Such permission of the IEEE does not
in any way imply IEEE endorsement of any of the Center for Software Testing Education and
Research's (CSTER's) products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.	

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 1 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

The AETG System: An Approach to Testing Based
on Combinatorial Design
By D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton

Appeared in IEEE Transactions On Software Engineering, volume 23, number
7, July 1997, pages 437--444.

Copyright © Telcordia Technologies and IEEE 1997, 98, 99

TABLE OF CONTENTS
Abstract
1. Introduction
2. The Basic Combinatorial Design Paradigm
3. Logarithmic Growth for n-Way Interaction Testing
4. A Heuristic Algorithm
5. AETG Input Language

5.1 Constraints
5.2 Hierarchy and hierarchical testing

6. Experiments
7. Overview of Applications

7.1 High-Level Test Planning
7.2 Test Case Generation

8. Related Methods
9. Summary
Acknowledgements
References

Abstract
This paper describes a new approach to testing that uses combinatorial designs to
generate tests that cover the pair-wise, triple or n-way combinations of a system's
test parameters. These are the parameters that determine the system's test
scenarios. Examples are system configuration parameters, user inputs and other
external events. We implemented this new method in the AETG system.

The AETG system uses new combinatorial algorithms to generate test sets that
cover all valid n-way parameter combinations. The size of an AETG test set grows
logarithmically in the number of test parameters. This allows testers to define test
models with dozens of parameters.

The AETG system is used in a variety of applications for unit, system, and

http://aetgweb.argreenhouse.com/papers/1997-tse.html#abstract
http://aetgweb.argreenhouse.com/papers/1997-tse.html#intro
http://aetgweb.argreenhouse.com/papers/1997-tse.html#basic
http://aetgweb.argreenhouse.com/papers/1997-tse.html#log
http://aetgweb.argreenhouse.com/papers/1997-tse.html#heur
http://aetgweb.argreenhouse.com/papers/1997-tse.html#input
http://aetgweb.argreenhouse.com/papers/1997-tse.html#constraints
http://aetgweb.argreenhouse.com/papers/1997-tse.html#hierarch
http://aetgweb.argreenhouse.com/papers/1997-tse.html#expermiments
http://aetgweb.argreenhouse.com/papers/1997-tse.html#overview
http://aetgweb.argreenhouse.com/papers/1997-tse.html#high-level
http://aetgweb.argreenhouse.com/papers/1997-tse.html#testcase
http://aetgweb.argreenhouse.com/papers/1997-tse.html#related
http://aetgweb.argreenhouse.com/papers/1997-tse.html#summary
http://aetgweb.argreenhouse.com/papers/1997-tse.html#acknowledg
http://aetgweb.argreenhouse.com/papers/1997-tse.html#references

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 2 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

interoperability testing. It has generated both high-level test plans and detailed test
cases. In several applications, it greatly reduced the cost of test plan development.

1. Introduction
Testing is an important but expensive part of the software development process.
Much research has been aimed at reducing its cost. This paper describes a new
approach to testing that uses combinatorial designs to generate efficient test sets.
We implemented this method in the Telcordia AETG system which is used in
Telcordia [8], [4], [5],[3], [6] and several of its clients [2] for unit, system and
interoperability testing. 1

In this new approach, the tester first identifies parameters that define the space of
possible test scenarios. For example, the parameters to test adding records to a
data base system would describe the records that can be added in a transaction.
The tester then uses combinatorial designs to create a test plan that "covers" all
pair-wise, triple, or n-way combinations of the test parameters.

The motivation is two fold. First, there are many systems where troublesome faults
are caused by the interaction of a few test parameters. A test plan should ideally
cover those interactions. The second is that the number of tests required to cover all
n-way parameter combinations, for fixed n, grows logarithmically in the number of
parameters. Thus, testers can define test models that have dozens of parameters
and that still require only a small number of test cases. This gives testers the
freedom to define models with enough detail to capture the semantics of the system
under test accurately. They don't have to worry that refining a model by adding one
more test parameter will cause the number of tests to explode. Models with 80 and
more parameters are common.

We did some experiments to test the effectiveness of AETG tests. In one
experiment we found faults in previously tested modules from two releases of a
Telcordia system, System A. In another, we measured the code coverage given by
AETG tests for several UNIX commands and several modules from System A. The
pair-wise AETG test sets gave good code coverage for both examples.

The AETG system is used in a variety of applications. This paper describes two
sample applications. In one, it designed a high-level test plan for the telephone 800
service software. In the other, it created detailed test cases for an ATM network
performance monitoring system. Designing good test plans for these systems by
hand would usually require one or two months. The AETG system reduced the time
to one or two weeks.

This paper reports on the AETG system. The next section motivates the basic
paradigm with an example. Section 3 proves that the number of tests required by the
combinatorial design approach grows logarithmically in the number of test
parameters. Section 4 gives a heuristic algorithm to generate tests. Section 5 gives
an overview of the AETG input language. Section 6 and 7 describe the effectiveness

http://aetgweb.argreenhouse.com/papers/1997-tse.html#DALAL
http://aetgweb.argreenhouse.com/papers/1997-tse.html#ISSRE
http://aetgweb.argreenhouse.com/papers/1997-tse.html#ISSRE2
http://aetgweb.argreenhouse.com/papers/1997-tse.html#BJE
http://aetgweb.argreenhouse.com/papers/1997-tse.html#STAR
http://aetgweb.argreenhouse.com/papers/1997-tse.html#BNR
http://aetgweb.argreenhouse.com/papers/1997-tse.html#foot1

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 3 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

experiments and two sample applications. Section 8 concerns related work.

2. The Basic Combinatorial Design Paradigm
Consider the problem of testing a telephone switch's ability to place telephone calls.
Table 1 shows four parameters that define a very simple test model. The Call Type
parameter tells the type of call. Its values are Local, Long Distance, and
International. The Billing parameter says who pays for the call. Its values are Caller
(for bill to caller), Collect and 800. The Access parameter tells how the calling party's
phone is connected to the switch. The options considered in this simple model are
Loop, ISDN line, and a PBX trunk. The final parameter, Status tells whether or not
the call was successful or failed either because the calling party's phone was busy
or the call was blocked in the phone network.

Table 1
Parameters for Placing a Telephone Call

Call Type Billing Access Status
Local Caller Loop Success
Long Distance Collect ISDN Busy
International 800 PBX Blocked

Since each different combination of parameter values determines a different test
scenario, and each of the four parameters has 3 values, the table defines a total of
34 = 81 different scenarios. Suppose for argument's sake that 81 tests is too many
as each individual test is expensive. Then one alternative would be to select a
default value for each parameter and then vary one parameter in each test until all
the parameter values are covered. Table 2 shows the resulting test set. It has 9 tests
instead of the 81 required for exhaustively testing all possible parameter
combinations. However, although it covers all individual parameter values, it covers
only 30 of the 9 x 6 = 54 possible pair-wise interactions between the test
parameters.

Table 2
Default Test Cases for Placing a Phone Call

Call Type Billing Access Status
Local Caller Loop Success
Long Distance Caller Loop Success
International Caller Loop Success
Local Collect Loop Success
Local 800 Loop Success
Local Caller ISDN Success

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 4 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

Local Caller PBX Success
Local Caller Loop Busy
Local Caller Loop Blocked

The test plan shown in Table 3 also has 9 test cases but, unlike the default test plan
in Table 2, it covers every pair-wise combination of parameter values. This test plan
was constructed using a well-known combinatorial design based on the projective
plane [12]. Since 2/3 of the calls in this test plan do not complete successfully, this
plan does not reflect the system's normal operational profile. In many applications a
significant number of faults are caused by parameter interactions that occur in
atypical, yet realistic, situations [4] [22]. A comprehensive test should also cover
these interactions. Since the combinatorial design method covers them very
efficiently, testers who feel that the test plan should reflect the operational profile
can use the combinatorial design method to complement tests derived from the
operational profile.

Table 3
Pair-Wise Test Cases for Placing A Phone Call

Call Type Billing Access Status
Local Collect PBX Busy
Long Distance 800 Loop Busy
International Caller ISDN Busy
Local 800 ISDN Blocked
Long Distance Caller PBX Blocked
International Collect Loop Blocked
Local Caller Loop Success
Long Distance Collect ISDN Success
International 800 PBX Success

Suppose that the test model had 13 parameters instead of 9 and that each had three
values, say 0, 1, and 2. Then there are 313 = 1,594,323 possible parameter
combinations. The default method for this configuration requires 27 test cases and
covers (13 x 12/2) + 26 x 12 = 390 of the the (13 x 12/2) x 9 = 702 possible pair-wise
parameter combinations. Table 4 [7] shows 15 tests that cover all pair-wise
parameter combinations. In general, default testing for n parameters with 3 values
each requires 2 x n + 1 tests and covers 5/9 of the pair-wise parameter
combinations while pair-wise testing requires 4 x log2 n tests and covers all the pair-
wise combinations. For example, for n = 40, exhaustive testing requires 340 = 1.2 x
1019 tests and default testing 81 tests. Pair-wise testing requires only 21 tests.

Table 4

http://aetgweb.argreenhouse.com/papers/1997-tse.html#HALL
http://aetgweb.argreenhouse.com/papers/1997-tse.html#ISSRE
http://aetgweb.argreenhouse.com/papers/1997-tse.html#WEST
http://aetgweb.argreenhouse.com/papers/1997-tse.html#CF

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 5 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

Fifteen Test Cases for 13 Parameters with Three Values Each

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 0 0 0 0
3 2 2 2 2 2 2 2 2 2 0 0 0 0
4 0 0 0 1 1 1 2 2 2 1 1 1 0
5 1 1 1 2 2 2 0 0 0 1 1 1 0
6 2 2 2 0 0 0 1 1 1 1 1 1 0
7 0 0 0 2 2 2 1 1 1 2 2 2 0
8 2 2 2 1 1 1 0 0 0 2 2 2 0
9 1 1 1 0 0 0 2 2 2 2 2 2 0
10 0 1 2 0 1 2 0 1 2 0 1 2 1
11 1 2 0 1 2 0 1 2 0 1 2 0 1
12 2 0 1 2 0 1 2 0 1 2 0 1 1
13 0 2 1 0 2 1 0 2 1 0 2 1 2
14 2 1 0 2 1 0 2 1 0 2 1 0 2
15 1 0 2 1 0 2 1 0 2 1 0 2 2

In the next section, we show that the number of test cases required to test all pair-
wise or n-way parameter combinations grows logarithmically in the number of
parameters.

3. Logarithmic Growth for n-Way Interaction Testing
We now show that the number of tests for n-way coverage for fixed n grows
logarithmically in the number of parameters. For ease of notation, we state the proof
for pair-wise coverage, i.e. for n = 2. The logarithmic growth follows from the
following.

Theorem: Given a system with k parameters each of which has l values, suppose
that r test cases have already been chosen and that the number of uncovered pairs
is N. Then there is a test case that covers at least N/l2 new pairs.

Proof: Consider the set

U = {(t,p): where t is a test case and p is a pair covered by t}

Since there are k parameters, each test case t covers k(k-1)/2 pairs. Thus, each test
case t appears in U with k(k-1)/2 different pairs p. Since each parameter has l
values, each pair p appears in U with lk-2 different test cases.

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 6 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

Now, consider the subset V of (t,p) such that the test case t is not one of the r
already selected test cases and the pair p is not covered by any of the selected test
cases. We will prove the theorem by counting the cardinality of V in two different
ways.

For any (t,p) in V, since the pair p is not covered, no test case that contains p is
among the already selected test cases. Thus p appears in V with lk-2 different test
cases t, i.e. there are lk-2 different test cases t such that (t,p) is in V. Thus, if the
number of uncovered pairs is N, the cardinality of V is N x lk-2.

Card(V) = N x lk-2

For each unselected test case t, let mt be the number of new pairs covered by t. Let
mt be 0 if t is one of the r selected test cases. Then t appears in V mt times. Thus

Card(V) = SUM t (mt)

Now let m be the largest of the mt. To prove the theorem we must show that m is at
least N/l2. Since the total number of possible test cases is lk, we have the following
inequality:

Card(V) = SUM t (mt) <= m x lk.

Thus, N x lk-2 <= m x lk, or

N / l2 <= m.

We proved the theorem by showing that at each step in generating a test set, there
is a test case that covers 1/l2 of the remaining pairs. Now consider a greedy
algorithm that at each step chooses a test case that covers the most uncovered
pairs. Let N be the number of pairs at the start. Since there are k fields with l values
each, N = k(k-1)/2 x l2. Using the greedy algorithm, after r test cases have been
chosen, the number of remaining pairs is

N' <= N x (1 - 1/l2)r.

Thus, if r > -log(N) / log(1 - 1/l2) then N' < 1 and all the pairs have been covered.
Using the approximation that log(1 - 1/l2) = -1/l2, we get that the greedy algorithm
covers all pairs when

r > l2 x log(N) >= l2 x (log(k(k-1)/2) + 2 log(l)).

This shows that the number of test cases required by the greedy algorithm grows at
most logarithmically in k and quadratically in l. Gargano, Korner, and Vaccaro have

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 7 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

shown [11] that for very large values of k, the number of test cases n satisfies n ~ l/2
log2 k. Their results are non-constructive and it seems unlikely that the linear growth
in l is true for moderate values of k.

4. A Heuristic Algorithm
The proof of logarithmic growth for the greedy algorithm assumes that at each stage
it is possible to find a test case that covers the maximum number of uncovered pairs.
Since there can be many possible test cases, it is not always computationally
possible to find an optimal test case. We now outline a random greedy algorithm we
developed. Again for simplicity of notation we state the algorithm for pair-wise
coverage.

Assume that we have a system with k test parameters and that the i-th parameter
has li different values. Assume that we have already selected r test cases. We select
the r+1 by first generating M different candidate test cases and then chosing one
that covers the most new pairs. Each candidate test case is selected by the
following greedy algorithm.

1. Choose a parameter f and a value l for f such that that parameter value
appears in the greatest number of uncovered pairs.

2. Let f1 = f. Then choose a random order for the remaining parameters. Then we
have an order for all k parameters f1, ... fk.

3. Assume that values have been selected for parameters f1, ..., fj. For 1 <= i <= j,
let the selected value for fi be called vi. Then choose a value vj+1 for fj+1 as
follows. For each possible value v for fj, find the number of new pairs in the set
of pairs { fj+1 = v and fi = vi for 1 <= i <= j }. Then let vj+1 be one of the values
that appeared in the greatest number of new pairs.

Note that in this step, each parameter value is considered only once for
inclusion in a candidate test case. Also, that when choosing a value for
parameter fj+1, the possible values are compared with only the j values already
chosen for parameters f1, ..., fj.

We did many experiments with this algorithm. When we set M = 50, i.e. when we
generated 50 candidate test cases for each new test case, the number of generated
test cases grew logarithmically in the number of parameters (when all the
parameters had the same number of values). Increasing M did not dramatically
reduce the number of generated tests. Since the candidate test cases depend on
the random order selected in Step 2, using a different random seed can produce a
different test set. One useful optimization is to generate 50 different test sets using
50 different random seeds and then choose the best among them. This sometimes
reduces the number of generated tests by ten to twenty percent. There is also a
deterministic construction and an alternative random algorithm [7] that sometimes

http://aetgweb.argreenhouse.com/papers/1997-tse.html#GKV
http://aetgweb.argreenhouse.com/papers/1997-tse.html#CF

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 8 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

generate fewer test cases.

5. AETG Input Language
The basic constructs of the AETG input language are fields and relations. The fields
are the system's test parameters and the relations define relationships between the
test parameters. To define a relation, the tester specifies the fields it contains and a
set of valid and invalid values for each field. A test generated from valid values is a
valid test and a test generated from valid and invalid values is an invalid test. Invalid
tests usually abort before completion because of some error condition.

Table 5 shows two relations that refine the test model given in Table 1 in Section 2.
The two relations, Relation 1 and Relation 2, have the same four fields: Call Type,
Billing, Access, and Status. Relation 1 defines 2 x 33 = 54 different test scenarios
and relation 2 defines 2 x 32 = 18 different test scenarios. Since International isn't a
valid value for Call Type in relation 1 and 800 isn't a valid value for Billing in relation
2, the set of test scenarios defined by Table 5 has the constraint that the pair (Call\
Type = International) and (Billing = 800) is not valid, i.e. that there are no
international calls to 800 numbers.

Table 5
Two Relations for Placing a Call with Constraint

Relation 1
Call Type Billing Access Status

Local Caller Loop Success
Long Distance Collect ISDN Busy
 800 PBX Blocked

Relation 2
Call Type Billing Access Status

Internat. Caller Loop Success
 Collect ISDN Busy
 PBX Blocked

The tester specifies a degree to test for each relation. If the tester specifies pair-wise
testing, the AETG system generates tests that cover all valid pair-wise combinations
of values of the relation's fields. This means that for any two fields f1 and f2 and any
values v1 for f1 and v2 for f2, there is some test in which f1 has the value v1 and f2
has the value v2. If the tester specifies n-way testing, the AETG system will
generate a test set that covers all n-way parameter combinations for each relation.

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 9 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

The AETG system generates tests for a set of relations by combining tests for the
individual relations. The algorithm for combining tests insures that for each combined
test there is a set of relations such that the projection of the test onto the fields in
each relation in the set is a test for that relation. If two relations have no common
fields, the combined tests for the two relations are simply concatenations of tests for
each individual relation.

The AETG system generates an invalid test for each invalid value specified for a
field in a relation. A value is an invalid value only within the context of a relation. A
value which is invalid for a field in one relation may be a valid value for that field in
another relation. To avoid having one invalid value mask another the AETG System
uses only one invalid value per test case. It creates the test for an invalid value by
taking a valid test for the relation and substituting the invalid value in place of the
field's valid value in that test.

The tester can also guarantee inclusion of their favorite test cases by specifying
them as seed tests or partial seed tests for a relation. The seed tests are included in
the generated test set without modification. The partial seed tests are seed test
cases that have fields that do not have assigned values. The AETG system
completes the partial test cases by filling in values for the missing fields.

5.1 Constraints

While constraints can be expressed using multiple relations as shown in Table 5, it
may be more efficient to express them explicitly by using unallowed tests. An
unallowed test for a relation specifies a set of test cases that are not valid for that
relation. Table 6 shows a relation with an explicit constraint. The relation, Relation 3,
has the same four fields as the two relations in Table 5. It also has the explicit
constraint that any test case with (Call Type = International) & (Billing = 800) is not
allowed, independent of the values for the Access and Status fields (the * in Table 6
is a wild card).

Table 6
Definition of Relation 3

Relation 3
Call Type Billing Access Status

Local Caller Loop Success
Long Distance Collect ISDN Busy
International 800 PBX Blocked

Constraints for relation 3
International 800 * *

Relation 3 defines the same set of possible test scenarios as relations 1 and 2, but

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 10 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

the two AETG inputs are not identical. Since relations 1 and 2 have incompatible
values for the Call Type field, tests generated for one relation are not valid tests for
the other. Since each relation requires 9 tests for pair-wise coverage, the union of
the two test sets has 18 tests. Relation 3 requires only the 10 tests shown in Table
7.

Table 7
Ten Test Cases for Relation 3

Call Type Billing Caller Access Status
Local Collect PBX Busy
Long Distance 800 Loop Busy
International Caller ISDN Busy
Local 800 ISDN Blocked
Long Distance Caller PBX Blocked
International Collect Loop Blocked
Local Caller Loop Success
Long Distance Collect ISDN Success
International Caller PBX Success
Local 800 PBX Success

Relations 1 and 2 together require more tests than relation 3 because they impose
more stringent test requirements. Relation 1 specifies that the pair (Access = ISDN)
& (Status = Busy) is covered in the context of Call Type = (Local or Long Distance)
and relation 2 specifies that the pair is covered in the context of Call Type =
International. Consequently, the pair is covered twice in the union of the test sets for
the two relations, once in each context. However, the pair is covered only once in
the test set for relation 3. A relation specifies not only a set of pairs to be covered
but also a context for those pairs.

In this example, the tester may not care if the pair (Access = ISDN) & (Status =
Busy) is covered in both contexts. In that case, an alternative semantics would
regard the relation as specifying only a set of pairs and not a context. The two
specifications would then be equivalent and Table 7 would be a test plan for either
specification.

A simple test generation algorithm is to first generate tests for one relation and then
use them to account for pairs in the other relation. This algorithm however does not
generate a minimal test set. For example, consider first covering Relation 1 and then
Relation 2. Relation 1 would still require 9 test cases and Relation 2 would require 2
test cases, one for the pair (Call Type = International) & (Billing = Caller) and one for
the pair (Call\ Type = International) & (Billing = Collect). The combined test set
would then have 11 test cases. This in one more than the 10 shown in Table 7.

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 11 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

We doubt that testers would prefer as a rule to ignore the context provided by the
relation. Testers often use different relations to define different semantic situations.
For example, they may have one relation to define requirements to test a line
interface card when the line's protocol is Ethernet and another for when the protocol
is ATM. The tester would want to insure that flow control worked in both
environments.

Since the fields in an AETG relation have only a finite number of values, the user-
interface can translate higher level constraints such as x != y and x <= y into the
unallowed tests.

5.2 Hierarchy and hierarchical testing

A system often has several natural degrees of interaction between its fields. A few
fields might be important and the tester may want to test their interactions with each
other more intensively then their interactions with the rest of the system. One option
is to have two relations. One which contains all the fields and which is tested for
pair-wise combinations and another which contains only the most important fields
and which is tested for a high-degree of interaction. However, that would be
wasteful. A better solution is to use a subrelation.

A subrelation is a relation that is used as a part of another relation. The tester can
put the most important fields into a subrelation and give it a high degree of
interaction testing. The tester can then use the subrelation inside relations that are
tested for a lower degree of interaction. When generating tests, the AETG system
will first generate tests that cover the subrelation's specified degree of interaction
and then use those tests as partial seed test cases when generating tests for the
containing relation.

6. Experiments
We did experiments to check the effectiveness of AETG test sets. In one
experiment, we tested user interface modules from two releases of a Telcordia
system. In another, we measured code coverage of AETG test sets.

Table 8
Defects Found in Two Releases of System A

 9 modules from release 1 13 modules from release 2
 Code Requirements Code Requirements

Range 0-5 0-5 0-3 0-10
Average 2 4 1 3

In the first experiment, the AETG system tested modules from two releases of a
Telcordia system, System A. It tested 9 modules from the first release and 13 from

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 12 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

the second. The modules were designed to validate the user's input for internal
consistency. A validation module usually has from 1000 to 2000 lines of C code. In
this experiment, the testers created the AETG input from the module's detailed
development requirements. Although the modules had already been tested, the
experiment found problems caused by defects in the code and by defects in the
requirement's documents.

Table 8 shows the results. The column labeled Code shows the number of code
defects and the column labeled Requirements shows the number of requirement
defects. There are more requirements defects than code defects. The requirements
defects are introduced when the system engineers take the high-level user-oriented
requirements and write detailed development requirements. This process requires a
great deal of effort and knowledge; faults are often introduced during it. Many of
these faults are corrected in the code later in the development process. Finding and
documenting them is important since the detailed development requirements are
used for maintenance.

Table 9
Code Coverage Results for Module A

Code coverage results for module A
Method No of tests Block Decision P-uses C-uses}

Pair-wise 200 92 85 49 72
All 436 92 85 49 72
Random 300 67 58 36 55

We also measured the code coverage given by AETG test sets. We used the ATAC
[15] [23] coverage tool to measure the block, decision, C-uses and P-uses metrics of
AETG tests generated for several UNIX commands and several validation modules
from System A. The pair-wise AETG test sets gave over 90% block coverage for
both application domains. For example, a set of 29 pair-wise AETG tests gave 90%
block coverage for the UNIX sort command. We also compared pair-wise testing
with random input testing and found that pair-wise testing gave better coverage. For
the modules from System A, we also found that code coverage didn't increase when
we increased from pair-wise testing to testing all valid input combinations. Table 9
has the results for one module. The UNIX coverage experiments are discussed in
detail in [5].

Several coverage experiments were also done at Nortel by Burr and Young [2]. They
also found that the AETG pair-wise test sets gave good coverage in a variety of
situations.

Of course, it is easy to construct examples where only one unique combination of
test parameters will trigger a fault. However, there is growing evidence that for many
real-world systems a large number of faults are triggered by many parameter
combinations. This is an area that merits further study.

http://aetgweb.argreenhouse.com/papers/1997-tse.html#HOR
http://aetgweb.argreenhouse.com/papers/1997-tse.html#WONG
http://aetgweb.argreenhouse.com/papers/1997-tse.html#ISSRE2
http://aetgweb.argreenhouse.com/papers/1997-tse.html#BNR

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 13 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

7. Overview of Applications
The AETG system is used to generate both high-level test plans and detailed test
cases. This section gives an example to illustrate each type of application. Other
applications are discussed in [4], [5], [6], and [3].

7.1 High-Level Test Planning

Table 10
800 Service Testing--Calls Arriving on Trunks

Relation for Calls arriving on trunks
Trunk Phone ANI

 Type Protocol Signalling Phone Class
Inter-office FGC MF flat rate No No
PBX FGD ISDN measured srv Yes Yes
Operator ISDN phone
Cellular business
Billing coin
 multi-party

Unallowed combinations for calls arriving on trunks
Operator * ISDN * * *
Cellular * ISDN * * *
Billing * ISDN * * *

In this example, the AETG system designed a test plan for the telephone switch
software implementing 800 service. Table 10 shows the relation to test calls
reaching the switch on a trunk from another switch. The first three fields specify the
trunk's type, its high-level protocol and its signalling protocol. The next two fields
specify attributes of the caller's phone line. The last field says if the caller's phone
number (ANI) is known to the switch. The three constraints specify that certain trunk
types can not use ISDN signalling. Table 10 defines 336 possible valid test
scenarios (480 scenarios without the constraint). Pair-wise testing required only 30
tests. Since each test scenario takes a few hours to run, going from 336 tests to 30
is a considerable cost savings. The AETG input for the complete 800 software had
two additional relations and required 100 tests in total.

7.2 Test Case Generation

In this example, the AETG system generated detailed test cases for an ATM network
monitoring system. It generated tests for two releases. Creating the AETG input for

http://aetgweb.argreenhouse.com/papers/1997-tse.html#ISSRE
http://aetgweb.argreenhouse.com/papers/1997-tse.html#ISSRE2
http://aetgweb.argreenhouse.com/papers/1997-tse.html#
http://aetgweb.argreenhouse.com/papers/1997-tse.html#

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 14 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

the first release took one week and modifying it for the second took an hour. This
system has several monitors each of which can signal when the number of corrupted
ATM cells exceeds a specified threshold during a specified unit of time. The system
has commands to turn monitors on and off, to set their thresholds and time units,
and to display statistics. To test the system, a tester gives it some configuration
commands and then uses an attenuator to corrupt the ATM transmission facilities.
The tester then checks if the system displays the correct statistics.

The AETG input had one relation and modeled the configuration commands and the
attenuator. The input for the first release had 61 fields; 29 fields with two values, 17
with three values, and 15 with four values. This gives a total of 229 x 317 x 415 = 7.4
x 1025 different combinations. The input for the second release had 75 fields; 35
fields with two values, 39 with three values, and 1 with four values. This give a total
of 235 x 339 x 4 = 5.5 x 1029 different combinations. The AETG system generated 41
pair-wise tests for the first release and 28 pair-wise tests for the second. Even
though the second release had many more combinations, pair-wise coverage
required fewer tests. This illustrates the logarithmic growth properties of the AETG
method. Even though the second release had six more fields with two values and 22
more fields with three values, it required fewer tests because it has 14 fewer fields
with four values.

This example also illustrates the distinction between the AETG approach and some
forms of input testing. Even though the system had a screen interface, the AETG
fields modeled the system's commands and not its user interface. This distinction is
discussed in greater detail in [5].

8. Related Methods
The combinatorial design paradigm is a "black box" approach to testing, i.e. it
generates tests from a model of the system's expected functionality. The test model
can be created from the system's functional requirements or from its detailed
development specifications. The combinatorial design approach differs from most
other black box methods in that its basic test requirement is coverage of all valid n-
way test parameters combinations for tester defined values of n.

A method related to our approach is random input testing and partition testing (see,
e.g., Duran and Ntafos [9] and Hamlet and Taylor [13]). The AETG approach differs
from random testing by allowing the tester to define complex relationships between
the test parameters. The tester can use the AETG constructs for relations,
constraints and hierarchy to focus testing. The AETG test plans are far from random.

Closely related to our work is the use by Mandl [17], Brownlie, Prowse and Phadke
[1] and Heller [14] of orthogonal arrays to generate pair-wise test sets. Orthogonal
arrays are combinatorial designs used to design statistical experiments [21] [18].
Because of their use in statistical experimentation, they have a balance requirement
that every pair is covered the same number of times. The AETG approach requires

http://aetgweb.argreenhouse.com/papers/1997-tse.html#ISSRE2
http://aetgweb.argreenhouse.com/papers/1997-tse.html#
http://aetgweb.argreenhouse.com/papers/1997-tse.html#HAMLET
http://aetgweb.argreenhouse.com/papers/1997-tse.html#MANDL
http://aetgweb.argreenhouse.com/papers/1997-tse.html#OATS
http://aetgweb.argreenhouse.com/papers/1997-tse.html#HELLER
http://aetgweb.argreenhouse.com/papers/1997-tse.html#TAGUCHI
http://aetgweb.argreenhouse.com/papers/1997-tse.html#PHADKE

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 15 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

only that every pair is covered at least once. It does not specify how many times
each pair is covered.

The orthogonal array balance requirement is very severe and preclues logarithmic
growth in the number of test parameters. For example, an orthogonal array for 100
parameters each with two values would require 101 test cases. An unbalanced pair-
wise test set requires only 10 tests. (The construction uses a combinatorial
argument due to Renyi [20].) Many applications have a large number of parameters
that have only a few values each. For these applications, the balance requirement
causes the number of test cases generated by orthogonal arrays to grow
unacceptably large. For example, it would not be practical to test the application
described in Section 7.2 using a balanced test set.

Another problem with balanced test sets is the incorporation of constraints that
specify that some combinations of values are invalid and must not occur in any test
case. How does one efficiently modify a balanced test set to prevent some pair from
occurring while insuring that the other pairs still occur the same number of times? In
contrast, it is easy to incorporate constraints into the heuristic algorithm in Section 4.
One can either throw away candidate test cases that violate a constraint or one can
avoid generating them by not selecting a parameter value if it would violate a
constraint.

By eliminating the balance requirement, we reduced the number of required test
cases to logarithmic growth in the number of parameters. We also allowed easy
specification of constraints. Together these two properties allow testers to have test
models with many parameters. Test models with 80 and more parameters are
common. Testers are free to add detail to a model by defining new test parameters.

The closest work to the AETG system is the CATS system developed by Sherwood
at AT&T [19] [16] [10]. CATS generates test sets that give n-way coverage for a set
of relations. However, it does not have the AETG notions of explicit constraints or
hierarchy. Instead, it uses multiple relations to express constraints. As shown above,
using multiple relations instead of explicit constraints may require more tests than
necessary. While we have not done a comparison study of the AETG algorithms
verses the CATS algorithms, the published data suggest that the AETG algorithms
generate fewer test cases than CATS. For example, Sherwood [19] reports that
CATS generated 240 tests for pair-wise coverage of 20 fields with 10 values each.
The AETG algorithms generate only 180 tests for this example [7].

9. Summary
The AETG system uses new combinatorial design algorithms to generate test sets
that efficiently cover the pair-wise or n-way combinations of a system's test
parameters. Examples of such parameters are a system's configuration parameters,
the parameters that define its environment, its inputs and internal events.

The basic AETG test requirement is that every pair-wise or n-way combination of

http://aetgweb.argreenhouse.com/papers/1997-tse.html#SLOANE
http://aetgweb.argreenhouse.com/papers/1997-tse.html#CATS
http://aetgweb.argreenhouse.com/papers/1997-tse.html#MALLOWS
http://aetgweb.argreenhouse.com/papers/1997-tse.html#EHR
http://aetgweb.argreenhouse.com/papers/1997-tse.html#CATS
http://aetgweb.argreenhouse.com/papers/1997-tse.html#CF

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 16 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

parameter values is covered. Unlike the orthogonal array approach, the AETG
method does not require that every combination is covered the same number of
times. By allowing unbalanced test sets, it greatly reduces the number of tests
required to check the specified level of interactions. For example, a balanced test set
for a system with 100 binary fields requires 101 tests while an unbalanced test set
requires only 10.

In general, the number of tests required by the AETG method grows logarithmically
in the number of test parameters. For example, checking all pair-wise combinations
of 13 fields with 3 values each requires only 15 tests out of a potential 1.5 million test
combinations. Consequently, the cost of adding detail in the form of additional
parameters is logarithmic. This is in contrast to models such as the finite state model
where each new feature adds a multiplicative factor to the number of tests.

Testers can use the AETG constructs to focus testing. The AETG constructs for
relations, constraints and hierarchy allow testers to express knowledge about the
system under test. The AETG test cases are far from random. In several
experiments with code coverage, the AETG test sets gave significantly better
coverage than randomly generated tests.

The AETG system is used in a variety of applications for unit, system, and
interoperability testing. It has generated both high-level test plans and detailed test
cases. Testers can base the AETG input on detailed development requirements or
on a system's high-level functional requirements, such as its user manual. The
experience with this new approach indicates that it is widely applicable and
generates efficient test sets of good quality.

Acknowledgements
The authors thank Ajay Kajla, George Horruitiner, David Carmen, Kirk Burroughs,
Aridaman Jain, Robert Erickson of Telcordia Technologies and Nishit Goel, Kevin
Burr, William Young and Steve Yu of Nortel for developing new AETG applications.
We thank Ajay Kajla and Jesse Parelius for their work on the code coverage
experiments. Finally, we thank Isaac Perelmutter, Adam Irgon and Jon Kettenring for
their support.

References
1. R. Brownlie, J. Prowse, and M. Phadke, "Robust Testing of AT&T PMX/StarMail
using OATS," AT&T Technical Journal, Vol. 71, no. 3, pp 41-47, March 1992.

2. K. Burr and W. Young, "Test Acceleration and Sutomatic Efficient Testcase
Generation," Nortel Technical Report, May 1997.

3. K. Burroughs, A. Jain, and R. L. Erickson, "Improved Quality of Protocol Testing
Through Techniques of Experimental Design," Supercomm/IEEE Int'l Conf. on

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 17 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

Communications '94, 1994, pp 745-752.

4. D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton, "The Automatic Efficient
Tests Generator," Fifth Int'l Symposium on Software Reliability Engineering, IEEE,
1994, pp 303 - 309.

5. D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, "The Combinatorial
Design Approach to Automatic Test Generation," IEEE Software, Vol 13, no 5, pp 83
- 89, Sept. 1996.

6. D. M. Cohen, S. R. Dalal, G. Horruitiner, and G. C. Patton, "The AETG System,"
Fifth Int'l Conf. on Software Testing, Analysis and Review, Software Quality
Engineering, Jacksonville Fla, 1996.

7. D. M. Cohen and M. L. Fredman, "New Techniques for Designing Qualitatively
Independent Systems," Rutgers Technical Report DCS-96-114, Nov 1996,

8. S. R. Dalal and G. C. Patton "Automatic Efficient Test Generator (AETG): A test
generation system for Screen testing, Protocol Verification, and Feature Interactions
Testing," Internal Bellcore Technical Memorandum, 1993.

9. J. Duran and S. Ntafos, "An evaluation of random testing," IEEE Trans on
Software Engineering, Vol SE-10, pp 438-444, July 1984.

10. w. K. Ehrlich, I. S. Dunietz, B. D. Szablak, C. L. Mallows, and A. Iannino
"Applying design of experiments to software testing," Proc. 19th Int'l Conf. on
Software Engineering, IEEE, 1997.

11. L. Gargano, J Korner and U. Vaccaro, "Sperner Capacities," Graphs and
combinatorics\/, Vol 9, pp 31-46, 1993.

12. M. Hall Jr., Combinatorial Theory, Wiley Interscience, New York, 1986.

13. D. Hamlet, and R. Taylor, "Partition Testing Does Not Inspire Confidence," IEEE
Trans. on Software Engineering, Vol SE-16, pp 1402-1412, Dec. 1990.

14. E. Heller, "Using Design of Experiment Structures to Generate Software Test
Cases," 12th Int'l Conf on Testing Computer Software, June 1995, pp 33-41.

15. J. R. Horgan, and S. London, "ATAC: A Data Flow Coverage Testing Tool for C,"
Proceedings of the IEEE Assessment of Quality Software Development Tools, IEEE,
1992, pp. 2-10.

16. C. Mallows, "Covering designs in random environments", to appear in Festschrift
for John Tukey, 1997.

17. R. Mandl, "Orthogonal Latin Squares: An Application of Experimental Design to
Compiler Testing," Communications of the ACM, Vol 28, no 10, pp. 1054-1058, Oct.
1985.

6/4/11 1:16 PMThe AETG System: An Approach to Testing Based on Combinatorial Design

Page 18 of 18http://aetgweb.argreenhouse.com/papers/1997-tse.html

18. M. S. Phadke, Quality Engineering Using Robust Design, Prentice Hall,
Englewood Cliffs, NJ., 1989.

19. G. Sherwood, "Effective Testing of Factor Combinations," Third Int'l Conf. on
Software Testing, Analysis and Review, Software Quality Engineering, Jacksonville,
Fla, 1994.

20. N. J. A. Sloane., "Covering Arrays and Intersecting Codes," Journal of
Combinatorial Designs\/, Vol 1, no 1, 51-63, 1993.

21. G. Taguchi, System of Experimental Design, Quality Resources, 1987.
Translation of Jikken keikakuho, Maurzen Co., Tokyo, 1976.

22. C. H. West, "Protocol Validation - Principles and Applications," Computer
Networks and ISDN Systems, Vol 24, no 3, pp 219-242, May 1992.

23. W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, "Effect of Test Set
Minimization on Fault Detection Effectiveness," Proc. 17th Int'l Conf. Software
Engineering, IEEE, 1995, pp 41 - 50.

FOOTNOTES
1. Please address all correspondence on the AETG System to S. R. Dalal, Telcordia
Technologies, 445 South St., Morristown, N.J. 07960. The AETG System is covered
by US Patent 5,542,043.

Copyright © Telcordia Technologies and IEEE 1997, 98, 99

