
Blog: Meaningful Metrics
From Michael Bolton at Developsense.
Original post at http://www.developsense.com/blog/2009/01/meaningful-metrics/

Over the years, I can remember working with exactly one
organization that used my idea of an excellent approach to software
engineering metrics. Their approach was based on several points:

• They treated metrics as first-order approximations, and
recognized that they were fundamentally limited and fallible.

• They used the metrics for estimating, rather than for
predicting. When their estimations didn’t work out, they
didn’t use the discrepancy to punish people. They used it to
try to understand what they hadn’t understood about the task
in the first place.

• They used inquiry metrics, rather than control metrics. That
is, they used the metrics to prompt questions about their
assumptions, rather than to provide answers or drive their
work.

• They used a large number of observational modes to manage
their business and to evaluate (and solve) their problems.
Most importantly, the managers observed people and what
they did, rather than watching printed reports. They used
close personal supervision, collaboration, and conversation as
their primary approach to learning about what was happening
on the project. They watched the game, rather than the box
scores.

• They didn’t collect any metrics on things that weren’t
interesting and important to them.

• They didn’t waste time collecting or managing the metrics.
• They had no interest in making the metrics look good. They

were interested in optimizing the quality of the work, not in
the appearance afforded by the metrics.

• They took a social sciences approach to measurement, as
Cem Kaner describes the social sciences here (in particular
on page 3 of the slides). Rather than assuming that metrics
gave them complete and accurate answers, they assumed that
the metrics were giving them partial answers that might be
useful.

In summary, they viewed metrics in the same kind of way as
excellent testers view testing: with skepticism (that is, not rejecting
belief but rejecting certainty), with open-mindedness, and with
awareness of the capacity to be fooled. Their metrics were (are)
heuristics, which they used in combination with dozens of other
heuristics to help in observing and managing their projects.

The software development and testing business seems to have a
very poor understanding of measurement theory and metrics-
related pitfalls, so conversations about metrics are often frustrating
for me. People assume that I don’t like measurement of any kind.
Not true; the issue is that I don’t like bogus measurement, and
there’s an overwhelming amount of it out there.

So, to move the conversation along, I’ll suggest that anyone who
wants to have a reasonable discussion with me on metrics should
read and reflect deeply upon

Software Engineering Metrics: What Do They Measure and How
Do We Know (Kaner and Bond)

and then explain how their metrics don’t run afoul of the problems
very clearly identified in the paper. It’s not a long paper. It’s
written by academics but, mirabile dictu, it’s as clear and readable
as a newspaper article (for example, it doesn’t use pompous Latin
expressions like mirabile dictu).

Here are some more important references:

• The Dark Side of Software Metrics (.pdf, Hoffman)
• Meaningful Metrics (.pdf, Allison)
• How to Lie With Statistics (book, Huff)
• Measuring and Managing Performance in Organizations

(book, Austin)
• Quality Software Management, Vol. 2: First Order Metrics

(book, Weinberg)
• Why Does Software Cost So Much? (book, deMarco)

Show me metrics that have been thoughtfully conceived, reliably
obtained, carefully and critically reviewed, and that avoid the
problems identified in these works, and I’ll buy into the metrics.
Otherwise I’ll point out the risks, or recommend that they be
trashed. As James Bach says, “Helping to mislead our clients is not
a service that we offer.”

Update: I’ve just noticed that this blog post doesn’t refer to my
own Better Software columns on metrics, which were published
later in 2009.

Three Kinds of Measurement (And Two Ways to Use
Them) Better Software, Vol. 11, No. 5, July 2009

How do we know what’s going on? We measure. Are software
development and testing sciences, subject to the same kind of
quantitative measurement that we use in physics? If not, what
kinds of measurements should we use? How could we think more
usefully about measurement to get maximum value with a minimum
of fuss? One thing is for sure: we waste time and effort when we
try to obtain six-decimal-place answers to whole-number
questions. Unquantifiable doesn’t mean unmeasurable. We
measure constantly WITHOUT resorting to numbers. Goldilocks
did it.

Issues About Metrics About Bugs Better Software, Vol. 11, No. 4,

May 2009

Managers often use metrics to help make decisions about the state
of the product or the quality of the work done by the test group. Yet
measurements derived from bug counts can be highly misleading
because a “bug” isn’t a tangible, countable thing; it’s a label for
some aspect of some relationship between some person and some
product, and it’s influenced by when and how we count… and by
who is doing the counting.

This entry was posted on Monday, January 19th, 2009 at 5:11 pm and is filed
under Measurement. You can follow any responses to this entry through the RSS
2.0 feed. You can leave a response, or trackback from your own site.

	

